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Abstract

The jointcal package simultaneously optimizes the astrometric and photometric cal-
ibrations of a set of astronomical images. In principle and often in practice, this ap-
proach produces distortion and thoroughput models which are more precise than
when fitted independently. This is especially true when the images are deeper than
the astrometric reference catalogs. In the “Astromatic” software suite, this simulta-
neous astrometry functionality is fulfilled by “SCAMP”. The code we describe here
has similar aims, but follows a slightly different route. Jointcal is built on top of the
the LSST Data Management software stack.
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jointcal: Simultaneous Astrometry & Photometry for
thousands of Exposures with Large CCD Mosaics

1 Introduction

With deep astronomical images, it is extremely common that the relative astrometry and pho-
tometry between images is considerably more precise than the accuracy of external catalogs,
where “more precise” can be as large as two orders of magnitude. For applications where
the quality of relative astrometry is important or vital, it is important to rely on some sort of
simultaneous astrometry solution, if possible optimal in a statistical sense.

This package performs a least-squares fit to a set of images. Since it aims at statistical optimal-
ity, wemaximize the likelihood of the measurements with respect to all unknown parameters
required to describe the data. These parameters are mostly in two sets: the position on the
sky of the objects in common between the images, and themapping of each image to the sky.
To these obvious parameters, one can add proper motions (where applicable), and parame-
ters describing the differential effect of atmospheric refraction on the position of objects. It is
clear that one cannot fit simultaneously the position on the sky and the mappings from CCD
coordinates to the sky, without extra constraints: the “sky” coordinate system is then unde-
fined, and one needs reference positions in order to fully define this frame. We use the GAIA
catalog (Gaia Collaboration et al., 2016) as our reference catalog, and may supplement it with
deeper data (e.g. PS1) where available.

SCAMP (Bertin, 2006) is the reference package for simultaneous astrometry in astronomy, at
least for relative alignment of wide-field images prior to stacking. Regarding optimization,
SCAMP follows a somewhat different route from ours: it does not optimize over the position
of common objects but rather minimizes the distance between pairs of transformed mea-
surements of the same object. This approach is not a maximum likelihood optimization, and
is likely statistically sub-optimal. The main drawback of SCAMP in the context of LSST is the
fact that it is a program and not a library, and hence not flexible regarding formats of images
and catalogs. But since SCAMP has been used for almost a decade in production by various
teams, the quality checking tools it provides should likely be reproduced in the context of our
package. We provide residual ntuples and hope that the first serious users will contribute
plotting tools.

Loading input catalogs and their metadata from disk is a large fraction of the total time. We
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can save time by re-using the input catalog to fit a similar style of multi-component model for
the relative and absolute photometry.

The plan of this note is as follows: we first sketch the algorithm (Section 3). We provide our
least-squares formulation in Section 4, and describe the how we evaluate the derivatives with
respect to the parameters. We then describe how we associate the measurements of each
object in different exposures in Section 5.

2 Past work

A summary of past work on this topic will go here eventually...

• Photographic Plates (Eichhorn, 1960)

• SDSS übercal (Padmanabhan et al., 2008)

• Pan-Starrs übercal (Magnier et al., 2013)

• DECam WcsFit (Bernstein et al., 2017)

3 Algorithm flow

The algorithm assumes that the initial single-frame WCS fits of the input images are accurate
to ∼ 1′′. Currently, the code properly interprets the SIPWCS’s (relying on lsst::afw::wcs), with
or without distortions. The code might handle transparently the “PV” encoding of distortions
(used in SCAMP and Swarp), but lacks the IO’s required to use this format. Note that in both
instances, the WCS boils down to a polynomial 2D transform from CCD space to a tangent
plane, followed by a gnomonic de-projection to the celestial sphere. The difference between
formats lies into the encoding of the polynomial, but they map exactly the same space of
distortion functions.

The algorithm can be roughly split into these successive steps:

1. load the input catalogs and ’rough’ WCS’s and catalogs, and select the sources to use in
the fit (e.g. good centroids, unblended, high enough signal-to-noise) via the configured
SourceSelectorTask.
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2. Associate these catalogs, i.e. associate each detection of the same on-sky source, and
associate those on-sky sources with a reference catalog (if provided).

3. Iteratively fit the model parameters and “true” on-sky values, clipping outliers at each
iteration.

4. Output results.

4 Mathematical formalism

4.1 Definitions

…
CCD=1 CCD=1

CCD=n CCD=n

Visit = 1 Visit = m

CcdImage: � = (1, 1) CcdImage: � = (m,n)

MeasuredStar: S�,i

FittedStar: Fi = hM�(s�,i)i = (↵i, �i,�i)

MeasuredStar: S�,i

Measurements: s�i = (x�i, y�i, f�i)

Figure 1: The relationship between MeasuredStars, CcdImages, and FittedStars.

We use the following notation in the mathematics that follows, with CamelCased words refer-
ring to the objects in the code. These terms are diagramed in Figure 1 on page 3.

• 𝛾 is the CcdImage representing one exposure (visit in LSST terminology) on one CCD. The
CcdImage contains metadata about that visit and CCD detector, as well as the catalog of
sources that were selected for use in the fit;
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• 𝑆𝛾,𝑖 is the position (pixels) and flux (instrument-flux counts) (𝑥𝛾𝑖, 𝑦𝛾𝑖, 𝑓𝛾𝑖) of the Measured-
Star on CcdImage 𝛾 corresponding to the on-sky FittedStar 𝑖;

• 𝐹𝑖 is the (sky) position and calibrated-flux (𝛼𝑖, 𝛽𝑖, 𝜙𝑖) of the star 𝑖, with some corresponding
number of measurements represented by MeasuredStars;

• 𝑀𝛾 is the mapping for CcdImage 𝛾 from pixels/instrument-flux (𝑥, 𝑦, 𝑓 ) to the tangent
planeon the sky/calibrated-flux (𝛼, 𝛽, 𝜙). Thismappingmay consist ofmodels constrained
across visits (different between CCDs; e.g. an affinemodel for each CCDposition, assum-
ing CCDs do not move), constrained across CCDs and visits (e.g. a 2d radial polynomial
of the optics) or constrained across CCDs (different between visits; e.g. a 2d polynomial
of the sky);

• 𝑅𝑗 refers to the (sky) position and (reference) calibrated-flux (𝛼𝑗 , 𝛽𝑗 , 𝜙𝑗) of RefStar 𝑗.

In addition to the terms defined in the diagram above, we define the following terms for the
measurement component,

• 𝑃𝛾 is a projector from sidereal coordinate to some tangent plane; 𝑃𝛾 is user-defined;

• 𝑊𝛾,𝑖 is the measurement weight of 𝑀𝛾 (𝑆𝛾,𝑖), i.e. the inverse of the 2×2 covariance matrix
(for astrometry), or the inverse of the transformed instrument-flux error;

and reference component,

• 𝑃 is some (user-provided) sky to tangent plane projector;

• 𝑊𝑗 is the weight matrix of the reference star, i.e. the inverse of the projected position
error 𝑃 (𝑅𝑗), or the inverse of the reference flux error.

4.2 Least-squares expression

The fit consists of minimizing, for photometry,

𝜒2 = ∑
𝛾,𝑖

[𝑀𝛾 (𝑆𝛾,𝑖) − 𝐹𝑖]𝑇 𝑊𝛾,𝑖[𝑀𝛾 (𝑆𝛾,𝑖) − 𝐹𝑖] (meas. terms)

+ ∑
𝑗

[𝐹𝑗 − 𝑅𝑗]𝑇 𝑊𝑗[𝐹𝑗 − 𝑅𝑗] (ref. terms) (1)

D R A F T 4 D R A F T



Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
jointcal DMTN-036 Latest Revision 2017-09-18

and for astrometry, taking into account the projection from the sky to the tangent plane 𝑃 :

𝜒2 = ∑
𝛾,𝑖

[𝑀𝛾 (𝑆𝛾,𝑖) − 𝑃𝛾 (𝐹𝑖)]𝑇 𝑊𝛾,𝑖[𝑀𝛾 (𝑆𝛾,𝑖) − 𝑃𝛾 (𝐹𝑖)] (meas. terms)

+ ∑
𝑗

[𝑃 (𝐹𝑗) − 𝑃 (𝑅𝑗)]𝑇 𝑊𝑗[𝑃 (𝐹𝑗) − 𝑃 (𝑅𝑗)] (ref. terms) (2)

where the first line iterates on allMeasuredStar 𝛾, 𝑖, fromall CcdImage 𝛾 , and the second iterates
on all RefStar 𝑗. In the first terms, the object at position 𝐹𝑖 is the one that was measured at
position 𝑆𝛾,𝑖 in image 𝛾 . The association between MeasuredStars, FittedStars, and RefStars is
described in Section 5.

Themeasurement terms compare themeasurement positions/fluxes to objects positions/fluxes
(the relative astrometry/photometry), the reference terms compare object positions/fluxes to
reference positions/fluxes (the absolute astrometry/photometry). We need these two sets of
terms because not all objects 𝐹𝑖 in the first terms appear in the second terms: many objects
in the images will not be in the reference catalogs, but those objects do help to constrain the
mappings 𝑀𝛾 . In addition, with so many measurements of our sources, we may have better
overall errors on the positions and fluxes than the reference catalog can provide.

The expressions above depend on two sets of parameters: the parameters defining the map-
pings 𝑀 and the on-sky positions/calibrated fluxes 𝐹𝑖. For a practical problem, this amounts
to a very large number of parameters, which becomes tractable when one notes that every
term in the 𝜒2 is only linked to a small number of parameters. We exploit this feature to
rapidly compute the gradient and the Hessian of the 𝜒2 in order to find the minimum.

So far, we have not specified how we model the mappings 𝑀 nor how we choose the var-
ious projectors that appear in expression (2). The code has been written to allow the user
to provide their own versions of both the model for mappings and the projection scheme.
We however provide some implementations for both aspects that we discuss in the next two
sections.

4.3 Minimization approach

The expressions for astrometry (eq. (2)) and photometry (eq. (1)) depend on two sets of
parameters: the parameters 𝜂 defining the mappings 𝑀𝛾 (𝑆𝛾,𝑖) ≡ 𝑀𝛾 (𝜂𝛾 , 𝑆𝛾,𝑖), and the “true”
calibrated fluxes 𝐹𝑖. We write themeasurement and reference residuals, with their respective
weights 𝑊𝛾𝑖 and 𝑊𝑗 , as separate functions of their parameters, for photometry,

D R A F T 5 D R A F T



Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
jointcal DMTN-036 Latest Revision 2017-09-18

𝐷𝛾𝑖 = 𝑀𝛾 (𝑆𝛾,𝑖) − 𝐹𝑖 (3)

𝐷𝑗 = 𝐹𝑗 − 𝑅𝑗 (4)

and for astrometry,

𝐷𝛾𝑖 = 𝑀𝛾 (𝑆𝛾,𝑖) − 𝑃𝛾 (𝐹𝑖) (5)

𝐷𝑗 = [𝑃 (𝐹𝑗) − 𝑃 (𝑅𝑗)] (6)

This results in the generalized 𝜒2 expression (compare to eq. (2) and (1)),

𝜒2 = ∑
𝛾,𝑖

𝐷𝛾𝑖
𝑇 𝑊𝛾,𝑖𝐷𝛾𝑖

+ ∑
𝑗

𝐷𝑗
𝑇 𝑊𝑗𝐷𝑗 (7)

To minimize this 𝜒2, we want to find the point in parameter space where the gradient ∇𝜒2 =
𝑑𝜒2/𝑑𝜃 = 0, where 𝜃 denotes the vector of parameters (of size 𝑁𝑝– see below). Applying the
product rule and noting the symmetry of 𝐷 and 𝐷𝑇 , we have

1
2

𝑑𝜒2

𝑑𝜃 = ∑
𝛾,𝑖

𝐷𝛾𝑖
𝑇 𝑊𝛾,𝑖∇𝐷𝛾𝑖

+ ∑
𝑗

𝐷𝑗
𝑇 𝑊𝑗∇𝐷𝑗 (8)

where the ∇𝐷 matrices have size 2 × 𝑁𝑝 (for astrometry) and 1 × 𝑁𝑝 (for photometry):

∇𝐷𝛾𝑖 =
𝑑𝐷𝛾𝑖
𝑑𝜃 (9)

∇𝐷𝑗 =
𝑑𝐷𝑗
𝑑𝜃 (10)

We call the vector that gathers all the parameters to be fit during the minimization 𝜃 = (𝜂𝛾 , 𝐹𝑖).
This vector can easily exceed 𝑁𝑝 > 105 entries. As an example with LSST (having a 189-CCD
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camera), a mapping consisting of a 3rd order 2-D polynomial per visit (16 𝜂𝑘 parameters per
visit) and 100 viable sources per CCD with 15 visits (roughly a year of LSST observations of
one sky location in one filter), 𝜃 will have 𝑁𝑝 = 283, 740 entries (283, 500 𝐹𝑖 parameters + 240
model parameters). However, the second derivative matrix, 𝑑2𝜒2/𝑑𝜃2, is very sparse, because
there are no terms connecting 𝐹𝑖 and 𝐹𝑗 if 𝑖 ≠ 𝑗, and depending on how the mappings are
parametrized, a set of 𝜂𝛾 parameters could be connected (in the second derivative matrix) to
only a small set of 𝐹𝑗 ’s. So, we can search for the minimum 𝜒2 using methods involving the
second derivative matrix, taking advantage of its sparseness.

We are looking for the offset to the starting parameters that zeros the gradient, so we can
Taylor expand about that starting parameter vector 𝜃0,

0 = 𝑑𝜒2

𝑑𝜃 (𝜃0 + 𝛿𝜃) = 𝑑𝜒2

𝑑𝜃 (𝜃0) + 𝑑2𝜒2

𝑑𝜃2 (𝜃0)𝛿𝜃 + 𝑂(𝛿𝜃2)

and solve for the offset 𝛿𝜃 that zeroes it to first order,

[
𝑑2𝜒2

𝑑𝜃2 (𝜃0)] 𝛿𝜃 = −𝑑𝜒2

𝑑𝜃 (𝜃0) (11)

𝐻𝛿𝜃 = −∇𝜒2 (12)

where we have identified the second derivative matrix with the Hessian matrix 𝐻 . Working
from eq. (8), we can write the second derivative matrix (the Hessian) as:

1
2

𝑑2𝜒2

𝑑𝜃2 = ∑
𝛾,𝑖

∇𝐷𝛾𝑖
𝑇 𝑊𝛾,𝑖∇𝐷𝛾𝑖

+ ∑
𝑗

∇𝐷𝑗
𝑇 𝑊𝑗∇𝐷𝑗 (13)

wherewe have neglected the second derivatives of the residual vectors𝐷. This second deriva-
tivematrix is by construction symmetric, and hence the parameter offsets (defined in eq. (11))
can be evaluated using the (fast) Cholesky 𝐿𝐷𝐿𝑇 factorization (see 4.10). If possible, map-
pings 𝑀𝛾 (𝜂𝛾 , 𝑆) linear with respect to their parameters 𝜂𝛾 , for example polynomials, are to be
favored because the second derivatives will no longer depend on that parameter. If the prob-
lem were non-linear (more precisely, if the second derivative varies rapidly) we would have to
implement a line search to minimize 𝜒2(𝜃0 + 𝜆 × 𝛿𝜃) over 𝜆.

Returning to the weights, we note that the matrices 𝑊𝛾,𝑖 are positive-definite and thus they
have square roots (e.g. the Cholesky square root) and can bewritten as: 𝑊𝛾,𝑖 = 𝛼𝑇

𝛾𝑖𝛼𝛾𝑖. Defining
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𝐾𝛾𝑖 = 𝛼𝛾𝑖𝐷𝛾𝑖, the Hessian expression becomes:

1
2

𝑑2𝜒2

𝑑𝜃2 = ∑
𝛾,𝑖

𝐾𝛾𝑖
𝑇 𝐾𝛾𝑖 + ∑

𝑗
𝐾𝑗

𝑇 𝐾𝑗 (14)

The sums present in this expression can be performed using matrix algebra; we concatenate
all the 𝐾 matrices into a single large, sparse matrix (the Jacobian),

𝐽 ≡ [{𝐾𝛾𝑖, ∀𝛾, 𝑖}, {𝐾𝑗 , ∀𝑗}] (15)

and thus we simply have
1
2

𝑑2𝜒2

𝑑𝜃2 = 𝐽 𝑇 𝐽 (16)

In the code, we take advantage of the fact that each term of the 𝜒2 only depends on a small
number of parameters. The Model::getMappingIndices method allows us to rapidly collect the
indices of these parameters, and we evaluate the 𝐷 matrices at these indices only, as all other
indices are zero.

The computation of the Jacobian and the gradient is performed in the respective PhotometryFit
and AstrometryFit classes. The methods leastSquareDerivativesMeasurement and leastSquareD-
erivativesReference compute the contributions to the Jacobian and gradient of the 𝜒2 from the
measurement terms and the references terms respectively. In these routines, the Jacobian is
represented as a list of Eigen::Triplets (𝑖, 𝑗, 𝐽𝑖𝑗) describing its elements. This list is then trans-
formed into a representation of sparsematrices suitable for algebra, and in particular suitable
to evaluate the product 𝐽 𝑇 𝐽 . Once we have evaluated 𝐻 ≡ 𝐽 𝑇 𝐽 , we can solve eq. (12) using
a Cholesky factorization. For sparse linear algebra, the Cholmod and Eigen packages provide
the required functionality. It turns out that for themappings we have currently employed, the
calculation of 𝐽 𝑇 𝐽 and the factorization are the most CPU intensive parts of the calculations,
and there is hence not much to be gained in speeding up the calculation of derivatives. For
the factorization, we have tried both Eigen and Cholmod (via the Eigen interface) and their
speeds differ by less than 10%.

4.4 Photometry example

As an illustrative example, we will work through a particular photometry mapping taking on-
chip fluxes and positions 𝑆𝛾𝑖 = (𝑓𝛾𝑖, 𝑥, 𝑦) to on-sky fluxes 𝜙𝛾𝑖, consisting of a constant zero-
point per CCD (𝑓0: the CCD’s filter response) and an (𝑛+ 𝑚)th order 2-D Chebyshev polynomial
(∑ 𝑎𝑗,𝑘𝑇𝑗(𝑢)𝑇𝑘(𝑣): the optics+sky response, where (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) are the focal plane coordinates
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of pixel (𝑥, 𝑦) on a given CCD) per visit. Thus, the mapping will be

𝑀𝛾 (𝜂, 𝑆𝛾𝑖) = 𝑀𝐶𝐶𝐷(𝑓 −1
0 , 𝑓𝛾𝑖)𝑀𝑣𝑖𝑠𝑖𝑡(𝑎𝑗,𝑘, 𝑥𝛾𝑖, 𝑦𝛾𝑖) (17)

= 𝑓𝛾𝑖[𝑓0]−1
𝑗=𝑛

∑
𝑗=0

𝑘=𝑚

∑
𝑘=0

𝑎𝑗,𝑘𝑇𝑗(𝑢𝛾𝑖)𝑇𝑘(𝑣𝛾𝑖)

= 𝜙𝛾𝑖

where we will fit 𝑓 −1
0 instead of 𝑓0 in order to simplify the derivatives (with respect to 𝜂 =

(𝑓 −1
0 , 𝑎𝑗,𝑘∀𝑗, 𝑘)). Computing those derivatives gives us:

∇𝐷𝛾𝑖 = (
𝜕𝐷𝛾𝑖

𝜕𝑓 −1
0

,
𝜕𝐷𝛾𝑖
𝜕𝑎0,0

, … ,
𝜕𝐷𝛾𝑖
𝜕𝑎𝑛,𝑚

,
𝜕𝐷𝛾𝑖
𝜕𝐹𝑖

)

where, for the measurement terms we have (recall eq. (3)),

𝜕𝐷𝛾𝑖

𝜕𝑓 −1
0

= 𝑓𝛾𝑖𝑀𝑣𝑖𝑠𝑖𝑡(𝑎𝑗,𝑘𝑥𝛾𝑖, 𝑦𝛾𝑖) (18)

𝜕𝐷𝛾𝑖
𝜕𝑎𝑗,𝑘

= 𝑓𝛾𝑖𝑓 −1
0 𝑇𝑗𝑘(𝑢𝛾𝑖, 𝑣𝛾𝑖)

𝜕𝐷𝛾𝑖
𝜕𝐹𝑖

= −1

and for the reference terms (recall eq. (4)),

∇𝐷𝑗 =
𝜕𝐷𝑗
𝜕𝐹𝑗

= 1 (19)

This model is degenerate to multiplying by a scale factor: 𝑀𝐶𝐶𝐷 → 𝑎𝑀𝐶𝐶𝐷, 𝑀𝑣𝑖𝑠𝑖𝑡 → 𝑎−1𝑀𝑣𝑖𝑠𝑖𝑡.
This degeneracy is not removed by the reference catalog. To break this degeneracy, we hold
fixed one CCD’s 𝑓 −1

0 (chosen to be the CCD closest to the center of the focal plane), and fit all
other CCD’s relative to that.

4.5 Magnitude-based photometry example

As an illustrative example, we will work through a particular photometry mapping taking on-
chip fluxes and positions 𝑆𝛾𝑖 = (𝑓𝛾𝑖, 𝑥, 𝑦) to on-sky magnitudes 𝑚𝛾𝑖, with the transform consist-
ing of a constant zero-point per CCD (𝑓0: the CCD’s filter response) and an (𝑛 + 𝑚)th order 2-D
Chebyshev polynomial (∑ 𝑎𝑗,𝑘𝑇𝑗(𝑢)𝑇𝑘(𝑣): the optics+sky response, where (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) are the
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focal plane coordinates of pixel (𝑥, 𝑦) on a given CCD) per visit. Thus, taking 𝑚𝐶𝐶𝐷, 𝑚𝑣𝑖𝑠𝑖𝑡, as the
respective magnitude components, the mapping is

𝑀𝛾 (𝜂, 𝑆𝛾𝑖) = 𝑚𝛾𝑖 + 𝑚𝐶𝐶𝐷 + 𝑚𝑣𝑖𝑠𝑖𝑡 (20)

= −2.5 log10(𝑀𝐶𝐶𝐷(𝑓 −1
0 , 𝑓𝛾𝑖)) − 2.5 log10(𝑀𝑣𝑖𝑠𝑖𝑡(𝑎𝑗,𝑘, 𝑥𝛾𝑖, 𝑦𝛾𝑖)) (21)

= 𝑚(𝑓𝛾𝑖) + 𝑚(𝑓 −1
0 ) + ∑ 𝑎𝑗,𝑘𝑇𝑗(𝑢)𝑇𝑘(𝑣)

= 𝑚𝛾𝑖

Making the visit component an additive polynomial of position makes the derivatives sim-
pler, while adding complexity to the resulting PhotoCalib (it becomes an exponential term
10𝑀𝑣𝑖𝑠𝑖𝑡(𝑥,𝑦)/−2.5). Computing the derivatives with respect to 𝜂 = (𝑓0, 𝑎𝑗,𝑘∀𝑗, 𝑘) gives us,

∇𝐷𝛾𝑖 = (
𝜕𝐷𝛾𝑖

𝜕𝑓 −1
0

,
𝜕𝐷𝛾𝑖
𝜕𝑎0,0

, … ,
𝜕𝐷𝛾𝑖
𝜕𝑎𝑛,𝑚

,
𝜕𝐷𝛾𝑖
𝜕𝐹𝑖

)

where, for the measurement terms we have (recall eq. (3)),

𝜕𝐷𝛾𝑖

𝜕𝑓 −1
0

= 1 (22)

𝜕𝐷𝛾𝑖
𝜕𝑎𝑗,𝑘

= 𝑇𝑗𝑘(𝑢𝛾𝑖, 𝑣𝛾𝑖)

𝜕𝐷𝛾𝑖
𝜕𝐹𝑖

= −1

and for the reference terms (recall eq. (4)),

∇𝐷𝑗 =
𝜕𝐷𝑗
𝜕𝐹𝑗

= 1 (23)

This model is degenerate to multiplying by a scale factor: 𝑀𝐶𝐶𝐷 → 𝑎𝑀𝐶𝐶𝐷, 𝑀𝑣𝑖𝑠𝑖𝑡 → −𝑎𝑀𝑣𝑖𝑠𝑖𝑡.
This degeneracy is not removed by the reference catalog. To break this degeneracy, we hold
fixed one CCD’s 𝑓 −1

0 (chosen to be the CCD closest to the center of the focal plane), and fit all
other CCD’s relative to that.
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4.6 The astrometric distortion model

The routines in the AstrometryFit class do not really evaluate the derivatives of the mappings,
but rather defer those to other classes. The main reason for this separation is that one could
conceive different ways to model the mappings from pixel coordinates to the tangent plane,
and the actual model should be abstract in the routines accumulating gradient and Jacobian.
The class AstrometryModel is an abstract class aiming at connecting generically the fitting rou-
tines to actual models. We have so far coded two of these models:

• SimplePolyModel implements one polynomial mapping per input CcdImage (i.e. Calexp).

• ConstrainedPolyModel implements a model where the mapping for each CcdImage is a
composition of a polynomial for each CCD and a polynomial for each exposure. For one
of the exposures, the mapping should be fixed or the model is degenerate.

For example, if one fits 10 exposures from a 36-CCD camera, there will be 10 × 36 polynomials
to fit with the first model, and 10 + 36 with the second model. The ConstrainedPolyModel as-
sumes that the focal plane of the instrument does not change across the data set. We could
consider coding amodelmade fromone ConstrainedPolyModel per set of images for which the
instrument can be considered as geometrically stable. This is similar to how Scamp models
the distortions.

In both of these models, we have used standard polynomials in 2 dimensions rather than an
orthogonal set (e.g. Legendre, Laguerre, ...) because regular polynomials are easy to com-
pose (i.e. one can easily compute the coefficients of P(Q(X)) ), and they map exactly the same
space as the commonorthogonal sets. We have taken care to normalize the input coordinates
(mapping the range of fitted data over the [−1, 1] interval), in order to alleviate the well-know
numerical issues associated to fitting of polynomials.

4.7 Choice of projectors

In the least squares expression (2), the residuals of the measurement terms read:

𝐷𝛾𝑖 = 𝑀𝛾 (𝑆𝛾𝑖) − 𝑃𝛾 (𝐹𝑖)

If the coordinates 𝐹𝑖 are sidereal coordinates, the projector 𝑃𝛾 determine the meaning of the
mapping 𝑀𝛾 . If one is aiming at producing WCS’s for the image, it seems wise to choose
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for 𝑃𝛾 the projection used for the envisioned WCS, so that the mapping 𝑀𝛾 just describes
the transformation from pixel space to the projection plane. For a SIP WCS, one will then
naturally choose a gnomonic projector, so that 𝑀𝛾 can eventually be split into the “CD” matrix
and the SIP-specific higher order distortion terms (see Section A for a brief introduction to
WCS concepts).

So, the choice of the projectors involved in the fit are naturally left to the user. This is done
via a virtual class ProjectionHandler, an instance of which has to be provided to the Astrome-
tryFit constructor. There are obviously ready-to-use ProjectionHandler implementations which
should suit essentially any need. For the standard astrometric fit aiming at setting WCS’s, we
provide theOneTPPerShoot derived class, which implements a common projection point for all
chips of the same exposure. It is fairly easy to implement derived classes with other policies.

The choice of the projector appearing in the reference terms of eq. (2) is not left to the user
because we could not find a good reason to provide this flexibility, and we have implemented
a gnomonic projection. We use a projector there so that the comparison of positions is done
using an Euclidean metric.

4.8 Proper motions and atmospheric refraction

The expression (2) above depends on two sets of parameters: the parameters defining the
mappings and the positions 𝐹𝑘. This expression hides two details implemented in the code:
accounting for proper motions and differential effects of atmospheric refraction.

Proper motions can be accounted for to predict the expected positions of objects and even
be considered as fit parameters. At the moment we neither have code to detect that some
(presumably stellar) object is moving, nor code to ingest proper motions from some external
catalog. Each FittedStar has a flag that says whether it is affected by a proper motion and the
proper motion parameters can all be fitted or not (see Section 4.11).

The code allows to account for differential chromatic effects of atmospheric refraction, i.e.
the fact that objects positions in the image plane are shifted by atmospheric refraction in a
way that depends on their color. The shift reads:

𝛿𝑆 = 𝑘𝑏(𝑐 − 𝑐0) ̂𝑛 (24)

where 𝑘𝑏 is a fit parameter (one per band 𝑏), 𝑐 is the color of the object in hand, 𝑐0 is the av-
erage color, and ̂𝑛 is the direction of the displacement in the tangent plane (i.e. a normalized
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vector along the parallactic direction, computed once for all for each Calexp). We have not
accounted for pressure variations because they are usually small, but it would not be diffi-
cult. The code accounts for color-driven differential effects within a given band, but ignores
the differences across bands, would one attempt to fit images from different bands at the
same time. Differences in recorded positions across bands will be accounted for in the fitted
mappings. It is important to do so because we are fitting WCS’s, and we want the fitted map-
pings to reflect at best the effects affecting measured positions. Since the color correction
(24) is not accounted for when using WCS’s to transform measured position, we have made
this correction zero on average. As for proper motions, fitting or not these refraction-induced
differential position shifts is left to the user (see Section 4.11).

4.9 Astrometry example

The matrix 𝑊𝛾,𝑖 is obtained by transporting the measurement errors through the fitted map-
ping. This introduces an extra dependency of the 𝜒2 on the parameters, that we have de-
cided not to track in the derivatives, because these errors mostly depend on the mapping
scaling, which is very well determined from the beginning. However, small changes of scal-
ing can lead to the 𝜒2 increasing between iterations. This is why we provide the Astrometry-
Model::freezeErrorScales which allows one to use the current state of the model to propagate
errors, even if mappings are updated. 𝑑𝐷𝛾𝑖/𝑑𝜃 has two non-zero blocks: the derivatives with
respect to the parameters of the 𝑀𝛾 mapping (which are delivered by the Gtransfo-derived
class that implements the fitted mapping, namely by the Gtransfo::paramDerivatives routine);
and the derivative with respect to the 𝐹𝑘 position which reads 𝑑𝑃𝛾 (𝐹𝑘)/𝑑𝐹𝑘 (delivered as well
by the class that implements the projector, via the Gtransfo::computeDerivative routine).

Regarding reference terms, the matrix 𝑊𝑗 should be derived from the reference catalog posi-
tion uncertainty matrix 𝑉0 (typically delivered for (𝛼, 𝛿) coordinates):

𝑊𝑗 = (𝑃 ′𝑇 𝑉0𝑃 ′)−1

where 𝑃 ′ is the derivative of the projector. The inverse of 𝑊𝑗 is in practice obtained using
the routine Gtransfo::transformPosAndErrorswhich is attached to the projector. The derivative
of the reference residual𝐷𝑗 with respect to the FittedStarposition𝐹𝑗 (see eq. (6)), is just the 2×2
matrix of the derivative𝑃 ′ of the projector𝑃 , whichwe compute usingGtransfo::computeDerivative.
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4.10 A note about our choice for linear solvers

The standard Cholesky decomposition of a matrix H consists in finding a factor 𝐿 such that
𝐻 = 𝐿𝐿𝑇 , with L triangular (possibly after a permutation of indices). Both Eigen and Cholmod
offer a variant, 𝐻 = 𝐿𝐷𝐿𝑇 , where D is diagonal and L (still triangular) has 1’s on its diagonal.
We have settled for this variant, because it offers improved numerical stability and allows
one, if needed, to add constraints (via Lagrange multipliers) to the problem. We have also
improved the Eigen interface to Cholmod by exposing to the user the factorization update
capability of Cholmod, which considerably speeds up the outlier removal. This is done in the
CholmodSimplicialLDLT2 class. Using Cholmod has a drawback: we need its run-time library.
Cholmod is now packaged in SuiteSparse, much bigger than what we need. This is why we
have packaged the smallest possible subset of SuiteSparse that fulfills our needs into joint-

cal_cholmod.

4.11 Indices of fits parameters and Fits of parameter subsets

Since we use vector algebra to represent the fit parameters, we need some sort of mech-
anism to associate indices in the vector parameter to some subset (e.g. the position of an
FittedStar) of these parameters. Furthermore, the implementation we have chosen does not
allow trivially to allocate the actual parameters at successive positions in memory. The As-
trometryFit::AssignIndices takes care of assigning indices to all classes of parameters. For the
mappings, the actual AstrometryModel implementation does this part of the job. All these in-
dices are used to properly fill the Jacobian and gradient, and eventually to offset parameters
in the AstrometryFit::OffsetParams.

Since the indexing of parameters is done dynamically, it is straightforward to only fit a subset
of parameters. This is why the routine AstrometryFit::AssignIndices takes a string argument that
specifies what is to be fitted.

5 Association of the input catalogs

In the LSST stack (Swinbank et al., LDM-151) framework, each reduced input image is call a
“calexp” (Calibrated Exposure). Each calexp holds the data from one exposure of one CCD,
and we associate the “reduction” products, typically a variance map, image mask planes, and
the derived catalog and WCS obtained by matching the catalog to some external reference
during single-frame processing. The data that jointcal needs from the calexp is stored in a

D R A F T 14 D R A F T



Draf
t

LARGE SYNOPTIC SURVEY TELESCOPE
jointcal DMTN-036 Latest Revision 2017-09-18

CcdImage object. It stores the objects selected from the source catalog (using a configurable
SourceSelector), the relevant exposure metadata and the initial WCS and PhotoCalib.

CcdImage
+WCS (rough)
+MJD,HA,PA,...
+Mapping
+Detection[*]

Associations
+ccdImageList
+fittedStarList
+refStarList

FittedStar
+RA,dec
+p.m. stuff
+color

MeasuredStar
+X(CCD)
+Cov(X)
+fittedStar

RefStar
+RA,dec
+Cov(RA,dec)
+fittedStar
+epoch ?

MeasuredStarList

CcdImageList

FittedStarList
RefStarList

Figure 2: Chart of class relations which implement the associations between input catalogs.
One FittedStar usually has several MeasuredStar pointing to it, and each RefStar points to
exactly one FittedStar. Most FittedStar’s have no RefStar.

The Associations class holds the list of input CcdImage’s and connects together the measure-
ments of the same object. The inputmeasurements are calledMeasuredStar and the common
detections are called FittedStar. The objects collected in an external catalog are called RefStar.
Despite their names, these classes can represent galaxies as well as stars. The collections
of sush objects are stored into MeasuredStarList, RefStarList and FittedStarList, which are con-
tainer derived from std::list. The relations between these classes, all implemented in C++, are
displayed in Figure 2 on page 15.

6 Fitting the transformations between a set of images

Some applications require determination of transformations between images rather than
mappings on the sky. For example a simultaneous fit of PSF photometry for the computa-
tion of the light curve a point-like transient requires mappings between images to transport
the common position in pixel space from some reference image to any other in the series.
The calexp series would typically involve the CCD from each exposure that covers the region
of interest. The package described here can fit for the needed mappings:

• in order to remove all reference terms from the 𝜒2 of eq. (2), one avoids calling Associa-
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tions::CollectRefStars.

• One chooses polynomial mappings for all Calexp except, reserving one to serve as a
reference with a fixed identity mapping. The distortion model SimplePolyModel allows
that.

• Chose identity projectors (the class IdentityProjector does precisely that).

So, fitting transformations between image sets can be done with the provided code.

A Representation of distortions in SIP WCS’s

The purpose of the appendix is to provide theminimal introduction toWCS concepts required
to understand the code (and the comments) when browsing through it. Readers familiar with
WCSs can give up here.

WCS’s are abstract concepts meant to map data on coordinate systems. In the astronomical
imaging framework, this almost always means mapping the pixel space into sidereal coordi-
nates, expressed in some conventional space1. One key aspect of the WCS “system” is that it
proposes some implementation of the mappings in FITS headers, which comes with software
libraries to decode and encode themappings. TheWCS conventions cover a very broad scope
of applications, and wide-field imaging makes use of a very small subset of those.

For the mappings used in wide-field imaging, the transformation from pixel space to sky can
be pictured in two steps:

1. mapping coordinates in pixel space onto a plane.

2. de-projecting this plane to the celestial sphere.

Let us clear up the projection/de-projection step first. There are plenty of choices possible
here, and the differences only matter fir really large images. The projection used by default
in the imaging community seems to be the gnomonic projection: the intermediate space is
a plane tangent to the celestial sphere and the plane→sphere correspondence is obtained
by drawing lines that go through the center of the sphere. In practice there is no need to

1The WCS concepts are broad enough to accommodate mapping of planet images, but we will obviously not
venture into that.
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know that, because any software dealing with WCS’s can pick up the right FITS keywords and
compute the required projection and de-projection. For this gnomonic projection, one finds
CTYPE1='RA---TAN' and CTYPE2='DEC--TAN' in the FITS header. This projection is often used to
generate re-sampled and/or co-added images and one should keep inmind that, for large im-
ages, the pixels are not exactly iso-area. One point of convention that might be useful to keep
in mind; is that WCS conventions express angles in degrees. In the gnomonic projection, off-
sets in the tangent plane are expressed in degrees (defined through angles along great circles
at the tangent point), so that the metric in the tangent plane is ortho-normal), and sidereal
angles evaluated on the sky are also provided in degrees by the standard implementations.
A notable exception is the LSST software stack where, by default, the angles are provided in
radians.

We now come back to the first mapping step, i.e. converting coordinates measured in pixel
units into some intermediate coordinate system. The universal WCS convention here is pretty
minimal: it allows for an affine transform, which is in general not sufficient to map the optical
distortions of the imaging system, even after a clever choice of the projection. Extensions
of the WCS convention have been proposed here, but none is universally understood. The
LSST software stack implements the SIP addition, which consists in applying a 2-d polynomial
transform to the CCD space coordinates, prior to entering the standard WCS chain (affine
transform, then de-projection). In practice, the SIP “twisting” is applied by the LSST software
itself (in the class afw::image::TanWcs), and the “standard” part (affine and de-projection, or
the reverse transform) are sub-contracted to the “libwcs” code.

One common complication of the WCS arena is that it was designed in the FITS framework
convention, itself highly Fortran-biased for array indexing, so that the first corner pixel of
an image is indexed (1,1). The LSST software, and most modern environments use C-like
indexing, i.e. images stars at (0,0), as well as coordinates in images. The WCS LSST software
hides this detail to users, by offsetting the pixel space coordinates provided and obtained
from the wcs-handling library.

We now detail what is involved in the SIP convention: the SIP “twisting” itself is encoded
through 4 polynomials of 2 variables, which encode the direct and reverse transformations.
The standard affine transform is expressed through a 2 × 2 matrix (𝐶𝑑) and a reference point
𝑋𝑟𝑒𝑓 (called CRPIX in the fits header):

𝑌𝑇 𝑃 = 𝐶𝑑(𝑋𝑝𝑖𝑥 − 𝑋𝑟𝑒𝑓 )
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𝑋𝑝𝑖𝑥 is a point in the CCD space, and 𝑌𝑇 𝑃 is its transform in the tangent plane. Obviously,
𝑋𝑝𝑖𝑥 and 𝑋𝑟𝑒𝑓 should be expressed in the same frame so that the transform does not depend
this frame choice. We write symbolically this transform as 𝑌𝑇 𝑃 = 𝐿(𝑋𝑝𝑖𝑥) The SIP distortions
are defined by a polynomial transformation in pixel space, that we call 𝑃𝐴, for the forward
transformation. By convention, the transform from pixel space to tangent plane then reads:

𝑌𝑇 𝑃 = 𝐿 (𝑋𝑝𝑖𝑥 − 𝑋𝑟𝑒𝑓 + 𝑃𝐴(𝑋𝑝𝑖𝑥 − 𝑋𝑟𝑒𝑓 ))

which again does not depend on the frame choice (0-based or 1-based), provided 𝑋𝑝𝑖𝑥 and
𝑋𝑟𝑒𝑓 are expressed in the same frame.

In jointcal ,the internal representation of SIP WCS’s uses three straight 2d→2d transforma-
tions: the SIP correction, the affine transformation and the de-projection. Those are just
composed to yield the actual transform, and the two first ones are generic polynomial trans-
formations. We provide routines to translate the TanWcs objects into our representation
(ConvertTanWcs) and back (GtransfoToTanWcs). In the latter case, we also derive the reverse
distortion polynomials, which are built if needed in our representation of SIP WCSs.

B Notes on meas_mosaic (from HSC)

Naoki Yasuda wrotemeas_mosaic for HSC processing, with a similar goal as jointcal.

For photometry,meas_mosaic fits a 7th order Chebyshev polynomial on the focal plane, plus a
zeropoint offset per CCD. The polynomial coefficients are written to the header of fcr-[visit]-
[ccd].fits files as C_N_M values, while the zeropoint and its error is written as FLUXMAG0 and
FLUXMAG0ERR. That calibration is applied to all of the fluxes in the catalog, which are written
out to the same “*_flux” catalog fields (converting them to magnitudes in the process).
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